Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Assuntos
Dano ao DNA , Replicação do DNA , RecQ Helicases , Homeostase do Telômero , Telômero , RecQ Helicases/metabolismo , RecQ Helicases/genética , Humanos , Telômero/metabolismo , Telômero/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Linhagem Celular Tumoral
3.
Curr Neurovasc Res ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441020

RESUMO

OBJECTIVE: Emboli commonly occurs in mechanical thrombectomy (MT). The objective of this study was to analyze predicting factors of emboli after MT. METHODS: Patients who underwent MT with successful reperfusion for anterior circulation occlusion were enrolled. Emboli included distal emboli at digital subtraction angiography (DSA) and unexpected embolic infarct on diffusion-weighted image (DWI) without distal emboli at DSA. Baseline characteristics, procedural details, angiographic outcomes, and clinical outcomes were reviewed. Multivariable analyses were performed to evaluate predictive factors for the occurrence of emboli. RESULTS: Of 601 patients, 149 (24.8%) patients had distal emboli at DSA, and 169 (28.1%) patients had unexpected embolic infarction on DWI even without distal emboli at DSA. A total of 318 (52.9%) patients were enrolled in the embolic group, and 283 (47.1%) patients were assigned to the non-embolic group. In multivariate analysis, larger microcatheter (OR 1.26, 95% CI 1.12-1.94; p = 0.047), clot passage (OR 1.33, 95% CI 1.07-1.87; p = 0.041), use of balloon guide catheter (BGC) (OR 0.70, 95% CI 0.52-0.92; p = 0.014), early ballooning of BGC (OR 0.68, 95% CI 0.50-0.90; p = 0.009), and longer stent retriever (OR 0.72, 95% CI 0.54-0.90; p = 0.029) were associated with occurrence of emboli. CONCLUSION: MT with only a stent retriever, use of a larger microcatheter, and clot passage might increase the risk of emboli. In contrast, contact aspiration thrombectomy, use of BGC, early ballooning of BGC, and use of longer stent retrievers could reduce the chance of emboli.

4.
Cell Rep ; 43(1): 113610, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165804

RESUMO

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ubiquitinação , Reparo do DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dano ao DNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
5.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068684

RESUMO

This study investigated novel quantitative traits loci (QTLs) associated with the control of grain shape and size as well as grain weight in rice. We employed a joint-strategy multiple GAPIT (Genome Association and Prediction Integrated Tool) models [(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)), Fixed and random model Circulating Probability Uniform (FarmCPU), Settlement of MLM Under Progressive Exclusive Relationship (SUPER), and General Linear Model (GLM)]-High-Density SNP Chip DNA Markers (60,461) to conduct a Genome-Wide Association Study (GWAS). GWAS was performed using genotype and grain-related phenotypes of 143 recombinant inbred lines (RILs). Data show that parental lines (Ilpum and Tung Tin Wan Hein 1, TTWH1, Oryza sativa L., ssp. japonica and indica, respectively) exhibited divergent phenotypes for all analyzed grain traits), which was reflected in their derived population. GWAS results revealed the association between seven SNP Chip makers and QTLs for grain length, co-detected by all GAPIT models on chromosomes (Chr) 1-3, 5, 7, and 11, were qGL1-1BFSG (AX-95918134, Chr1: 3,820,526 bp) explains 65.2-72.5% of the phenotypic variance explained (PVE). In addition, qGW1-1BFSG (AX-273945773, Chr1: 5,623,288 bp) for grain width explains 15.5-18.9% of PVE. Furthermore, BLINK or FarmCPU identified three QTLs for grain thickness independently, and explain 74.9% (qGT1Blink, AX-279261704, Chr1: 18,023,142 bp) and 54.9% (qGT2-1Farm, AX-154787777, Chr2: 2,118,477 bp) of the observed PVE. For the grain length-to-width ratio (LWR), the qLWR2BFSG (AX-274833045, Chr2: 10,000,097 bp) explains nearly 15.2-32% of the observed PVE. Likewise, the major QTL for thousand-grain weight (TGW) was detected on Chr6 (qTGW6BFSG, AX-115737727, 28,484,619 bp) and explains 32.8-54% of PVE. The qTGW6BFSG QTL coincides with qGW6-1Blink for grain width and explained 32.8-54% of PVE. Putative candidate genes pooled from major QTLs for each grain trait have interesting annotated functions that require functional studies to elucidate their function in the control of grain size, shape, or weight in rice. Genome selection analysis proposed makers useful for downstream marker-assisted selection based on genetic merit of RILs.

6.
Front Genet ; 14: 1282620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054028

RESUMO

This study employed a joint strategy high-density SNP Chip DNA markers and multiple Genome Association and Prediction Integrated Tool (GAPIT) models [(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), Fixed and random model Circulating Probability Uniform (FarmCPU), General Linear Model (GLM), and Settlement of Mixed Linear Model (MLM) Under Progressively Exclusive Relationship (SUPER)], to investigate novel genetic factors controlling mesocotyl elongation and seedling emergence for direct-seeded rice. Genotype data (230,526 SNP Chip DNA makers) of 117 doubled haploid lines (derived from a cross between 93-11 (Oryza sativa L. ssp. indica) and Milyang352 (O. sativa L. ssp. japonica) were used to perform a Genome-Wide Association Study (GWAS). Results revealed the association between five (5) topmost significant SNP markers, of which number two [AX-155741269, Chr2: 15422406 bp, and AX-155200917, Chr7: 23814085 bp, explaining 37.5% and 13.8% of the phenotypic variance explained (PVE)] are linked to the mesocotyl elongation loci, while three (AX-282097034 and AX-283652873, Chr9: 9882817 bp and 1023383 bp, PVE 64.5%, and 20.2%, respectively, and AX-154356231, Chr1: 17413989 bp, PVE 21.1%) are tightly linked to the loci controlling seedling emergence. The qMEL2-1 and qSEM9-1 are identified as major QTLs explaining 37.5% and 64.5% of the PVE for mesocotyl elongation and seedling emergence, respectively. The AX-282097034 (Chr9: 9882817 bp) was co-detected by four GAPIT models (BLINK, FarmCPU, SUPER, and GLM), while AX-155741269 was co-detected by BLINK and SUPER. Furthermore, a high estimated heritability (Mesocotyl elongation: h2 = 0.955; seedling emergence: h2 = 0.863; shoot length: h2 = 0.707) was observed. Genes harbored by qMEL2-1 and qSEM9-1 have interesting annotated molecular functions that could be investigated through functional studies to uncover their roles during mesocotyl elongation and seedling emergence events in rice. Furthermore, the presence of genes encoding transcription factors, growth- and stress response, or signaling-related genes would suggest that mesocotyl elongation and seedling emergence from deep direct-seeded rice might involve an active signaling cascade and transport of molecules, which could be elucidated through functional analysis. Likewise, genomic selection analysis suggested markers useful for downstream marker-assisted selection (MAS).

7.
Plant Methods ; 19(1): 118, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924111

RESUMO

BACKGROUND: Crop breeding should be accelerated to address global warming and climate change. Wheat (Triticum aestivum L.) is a major food crop. Speed breeding (SB) and speed vernalization (SV) techniques for spring and winter wheat have recently been established. However, there are few practical examples of these strategies being used economically and efficiently in breeding programs. We aimed to establish and evaluate the performance of a breeder-friendly and energy-saving generation acceleration system by modifying the SV + SB system. RESULTS: In this study, a four-generation advancement system for wheat (regardless of its growth habits) was established and evaluated using an energy-efficient extended photoperiod treatment. A glasshouse with a 22-hour photoperiod that used 10 h of natural sunlight and 12 h of LED lights, and minimized temperature control during the winter season, was successful in accelerating generation. Even with one or two field tests, modified speed breeding (mSB) combined with a speed vernalization system (SV + mSB) reduced breeding time by more than half compared to traditional field-based methods. When compared to the existing SV + SB system, the SV + mSB system reduced energy use by 80% to maintain a 22-hour photoperiod. Significant correlations were found between the SV + mSB and field conditions in the number of days to heading (DTH) and culm length (CL). Genetic resources, recombinant inbred lines, and breeding materials that exhibited shorter DTH and CL values under SV + mSB conditions showed the same pattern in the field. CONCLUSIONS: The results of our SV + mSB model, as well as its practical application in wheat breeding programs, are expected to help breeders worldwide incorporate generation acceleration systems into their conventional breeding programs.

8.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37797621

RESUMO

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/metabolismo , Proteína BRCA1/metabolismo , Ubiquitinação , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Reparo de DNA por Recombinação , DNA , Reparo do DNA
9.
Nucleic Acids Res ; 51(16): 8643-8662, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439356

RESUMO

Environmental agents like ionizing radiation (IR) and chemotherapeutic drugs can cause severe damage to the DNA, often in the form of double-strand breaks (DSBs). Remaining unrepaired, DSBs can lead to chromosomal rearrangements, and cell death. One major error-free pathway to repair DSBs is homologous recombination repair (HRR). Tousled-like kinase 1 (TLK1), a Ser/Thr kinase that regulates the DNA damage checkpoint, has been found to interact with RAD54, a central DNA translocase in HRR. To determine how TLK1 regulates RAD54, we inhibited or depleted TLK1 and tested how this impacts HRR in human cells using a ISce-I-GR-DsRed fused reporter endonuclease. Our results show that TLK1 phosphorylates RAD54 at three threonines (T41, T59 and T700), two of which are located within its N-terminal domain (NTD) and one is located within its C-terminal domain (CTD). Phosphorylation at both T41 and T59 supports HRR and protects cells from DNA DSB damage. In contrast, phosphorylation of T700 leads to impaired HRR and engenders no protection to cells from cytotoxicity and rather results in repair delay. Further, our work enlightens the effect of RAD54-T700 (RAD54-CTD) phosphorylation by TLK1 in mammalian system and reveals a new site of interaction with RAD51.


Assuntos
Reparo do DNA , Reparo de DNA por Recombinação , Animais , Humanos , Fosforilação , Dano ao DNA , DNA/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Homóloga , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Nature ; 619(7968): 201-208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316655

RESUMO

Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Telômero , Moldes Genéticos , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mamíferos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteômica , Rad51 Recombinase/metabolismo , Telômero/genética , Telômero/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
12.
J Biol Chem ; 299(6): 104817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178921

RESUMO

Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.


Assuntos
DNA de Cadeia Simples , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleotídeos/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 14(1): 432, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702902

RESUMO

The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.


Assuntos
Replicação do DNA , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteína BRCA2/metabolismo , DNA , Recombinação Homóloga
14.
Front Plant Sci ; 13: 994149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407609

RESUMO

Nitric oxide (NO), an ancient molecule with multiple roles in plants, has gained momentum and continues to govern plant biosciences-related research. NO, known to be involved in diverse physiological and biological processes, is a central molecule mediating cellular redox homeostasis under abiotic and biotic stresses. NO signaling interacts with various signaling networks to govern the adaptive response mechanism towards stress tolerance. Although diverging views question the role of plants in the current greenhouse gases (GHGs) budget, it is widely accepted that plants contribute, in one way or another, to the release of GHGs (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3)) to the atmosphere, with CH4 and N2O being the most abundant, and occur simultaneously. Studies support that elevated concentrations of GHGs trigger similar signaling pathways to that observed in commonly studied abiotic stresses. In the process, NO plays a forefront role, in which the nitrogen metabolism is tightly related. Regardless of their beneficial roles in plants at a certain level of accumulation, high concentrations of CO2, CH4, and N2O-mediating stress in plants exacerbate the production of reactive oxygen (ROS) and nitrogen (RNS) species. This review assesses and discusses the current knowledge of NO signaling and its interaction with other signaling pathways, here focusing on the reported calcium (Ca2+) and hormonal signaling, under elevated GHGs along with the associated mechanisms underlying GHGs-induced stress in plants.

15.
J Hematol Oncol ; 15(1): 146, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242092

RESUMO

DNA lesions induced by alkylating agents are repaired by two canonical mechanisms, base excision repair dependent on poly(ADP) ribose polymerase 1 (PARP1) and the other mediated by O6-methylguanine (O6meG)-DNA methyltransferase (MGMT) in a single-step catalysis of alkyl-group removal. O6meG is the most cytotoxic and mutagenic lesion among the methyl adducts induced by alkylating agents. Although it can accomplish the dealkylation reaction all by itself as a single protein without associating with other repair proteins, evidence is accumulating that MGMT can form complexes with repair proteins and is highly regulated by a variety of post-translational modifications, such as phosphorylation, ubiquitination, and others. Here, we show that PARP1 and MGMT proteins interact directly in a non-catalytic manner, that MGMT is subject to PARylation by PARP1 after DNA damage, and that the O6meG repair is enhanced upon MGMT PARylation. We provide the first evidence for the direct DNA-independent PARP1-MGMT interaction. Further, PARP1 and MGMT proteins also interact via PARylation of MGMT leading to formation of a novel DNA damage inducible PARP1-MGMT protein complex. This catalytic interaction activates O6meG repair underpinning the functional crosstalk between base excision and MGMT-mediated DNA repair mechanisms. Furthermore, clinically relevant 'chronic' temozolomide exposure induced PARylation of MGMT and increased binding of PARP1 and MGMT to chromatin in cells. Thus, we provide the first mechanistic description of physical interaction between PARP1 and MGMT and their functional cooperation through PARylation for activation of O6meG repair. Hence, the PARP1-MGMT protein complex could be targeted for the development of advanced and more effective cancer therapeutics, particularly for cancers sensitive to PARP1 and MGMT inhibition.


Assuntos
O(6)-Metilguanina-DNA Metiltransferase , Ribose , Difosfato de Adenosina , Alquilantes/toxicidade , Cromatina , DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Guanina/análogos & derivados , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Supressoras de Tumor/genética
16.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265488

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Proteômica , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , Homeostase
17.
Life (Basel) ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013451

RESUMO

Nitrogen (N) is a gas and the fifth most abundant element naturally found in the atmosphere. N's role in agriculture and plant metabolism has been widely investigated for decades, and extensive information regarding this subject is available. However, the advent of sequencing technology and the advances in plant biotechnology, coupled with the growing interest in functional genomics-related studies and the various environmental challenges, have paved novel paths to rediscovering the fundamentals of N and its dynamics in physiological and biological processes, as well as biochemical reactions under both normal and stress conditions. This work provides a comprehensive review on multiple facets of N and N-containing compounds in plants disseminated in the literature to better appreciate N in its multiple dimensions. Here, some of the ancient but fundamental aspects of N are revived and the advances in our understanding of N in the metabolism of plants is portrayed. It is established that N is indispensable for achieving high plant productivity and fitness. However, the use of N-rich fertilizers in relatively higher amounts negatively affects the environment. Therefore, a paradigm shift is important to shape to the future use of N-rich fertilizers in crop production and their contribution to the current global greenhouse gases (GHGs) budget would help tackle current global environmental challenges toward a sustainable agriculture.

18.
Mol Plant ; 15(8): 1300-1309, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754174

RESUMO

There are many challenges facing the development of high-yielding, nutritious crops for future environments. One limiting factor is generation time, which prolongs research and plant breeding timelines. Recent advances in speed breeding protocols have dramatically reduced generation time for many short-day and long-day species by optimizing light and temperature conditions during plant growth. However, winter crops with a vernalization requirement still require up to 6-10 weeks in low-temperature conditions before the transition to reproductive development. Here, we tested a suite of environmental conditions and protocols to investigate whether the vernalization process can be accelerated. We identified a vernalization method consisting of exposing seeds at the soil surface to an extended photoperiod of 22 h day:2 h night at 10°C with transfer to speed breeding conditions that dramatically reduces generation time in both winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare). Implementation of the speed vernalization protocol followed by speed breeding allowed the completion of up to five generations per year for winter wheat or barley, whereas only two generations can be typically completed under standard vernalization and plant growth conditions. The speed vernalization protocol developed in this study has great potential to accelerate biological research and breeding outcomes for winter crops.


Assuntos
Grão Comestível , Hordeum , Produtos Agrícolas/genética , Flores , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Melhoramento Vegetal , Triticum/genética
19.
Front Cell Dev Biol ; 10: 866601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652094

RESUMO

Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5'-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.

20.
Methods Mol Biol ; 2528: 305-316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704200

RESUMO

R-loops, three-stranded RNA-DNA hybrids that arise mostly during transcription, could cause genomic instability via distinct routes. Detection of genomic RNA-DNA hybrids via immunofluorescence and RNA-DNA hybrid immunoprecipitation techniques have facilitated the discovery of many cellular factors that maintain R-loop homeostasis. One of multiple R-loop avoidance mechanisms is mediated by several nucleic acid motor proteins that utilize the energy from ATP hydrolysis to dissociate the R-loop structure. The biochemical activity of such motor proteins can be interrogated using synthetic R-loop substrates. Here, we describe methods to generate R-loop and RNA-DNA substrates for studying the activity of R-loop processing motor proteins such as human DHX9 and S. cerevisiae Pif1. Such studies provide valuable information regarding the directionality, nucleic acid strand preference, and processivity of these enzymes. Moreover, these substrates and companion biochemical assays provide the requisite tool for understanding the action of physiologically relevant regulators of these motor proteins.


Assuntos
Estruturas R-Loop , Proteínas de Saccharomyces cerevisiae , DNA/química , DNA Helicases/metabolismo , Humanos , Imunoprecipitação , RNA/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...